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1  | INTRODUC TION

The purpose of this study was to characterize resting-state cortical 
networks in chronic stroke survivors using electroencephalography 
(EEG). Functional magnetic resonance imaging (fMRI), magnetoen-
cephalography (MEG), and EEG all reveal regions of the brain that 
have common activation patterns which are thought to be repre-
sentative of functionally connected networks (Aoki et  al.,  2015; 
Biswal et  al.,  1995; Brookes et  al.,  2011; Rosazza & Minati,  2011; 
Wirsich et al., 2020). Some of the more common cortical networks 
include the default mode, sensorimotor, executive control, vi-
sual, lateralized frontoparietal, auditory, and temporoparietal net-
works (Aoki et  al.,  2015; Biswal et  al.,  1995; Brookes et  al.,  2011; 
Rosazza & Minati, 2011). The brain utilizes these cortical networks 

in different ways including memory consolidation, cognition, vision, 
and movement (Bressler, 1995; Corbetta, 1998; Mazoyer et al., 2001; 
Sukerkar, 2010). An improved understanding of the changes in these 
networks after stroke could provide insight into the mechanisms un-
derlying functional loss and recovery.

FMRI studies of brain networks following stroke indicate altered 
cortical patterns throughout the brain including areas within the 
default mode, sensorimotor, executive control, visual, and lateral-
ized frontoparietal networks (Balaev et al., 2018; Zhao et al., 2018). 
Using fMRI, Tuladhar and colleagues found reduced functional con-
nectivity after stroke within and between the medial temporal lobe, 
posterior cingulate, and medial prefrontal cortex; areas associated 
with the default mode network (Tuladhar et al., 2013). FMRI stud-
ies of sensorimotor network activity during motor tasks have shown 
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Abstract
Introduction: The purpose of this study was to characterize resting-state cortical 
networks in chronic stroke survivors using electroencephalography (EEG).
Methods: Electroencephalography data were collected from 14 chronic stroke and 
11 neurologically intact participants while they were in a relaxed, resting state. EEG 
power was normalized to reduce bias and used as an indicator of network activity. 
Correlations of orthogonalized EEG activity were used as a measure of functional 
connectivity between cortical regions.
Results: We found reduced cortical activity and connectivity in the alpha (p <  .05; 
p = .05) and beta (p < .05; p = .03) bands after stroke while connectivity in the gamma 
(p = .031) band increased. Asymmetries, driven by a reduction in the lesioned hemi-
sphere, were also noted in cortical activity (p = .001) after stroke.
Conclusion: These findings suggest that stroke lesions cause a network alteration to 
more local (higher frequency), asymmetric networks. Understanding changes in cor-
tical networks after stroke could be combined with controllability models to identify 
(and target) alternate brain network states that reduce functional impairment.
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increased activity in both hemispheres excluding the lesioned region 
(Carey et al., 2002; Grefkes et al., 2008; Mintzopoulos et al., 2009; 
Rossini et  al., 1998; Ward et  al., 2003). Others have shown a cor-
responding decrease in functional connectivity within and between 
hemispheres during motor tasks (Grefkes et al., 2008; Mintzopoulos 
et al., 2009). While fMRI offers excellent spatial resolution (~1 mm) 
of the cortex, it lacks temporal resolution (~1 s) which prevents the 
study of underlying brain processes that act at the millisecond time 
scale (Koenig et al., 2005; Lopes da Silva, 2013). EEG and MEG, with 
their better temporal resolution (~1  ms), have been employed to 
overcome this issue.

EEG/MEG studies of brain networks after stroke indicate 
frequency-specific changes. Sensorimotor task-based studies in 
people with stroke show impairment-specific changes in alpha 
and beta band activity, with a decrease in activity near the lesion 
and an increase in cortical asymmetry (Platz et  al., 2000; Rossiter 
et al., 2014; Stępień et al., 2011; Strens et al., 2004). When exam-
ining EEG functional connectivity during a visually guided grip task, 
Bönstrup and colleagues found alpha band connectivity increased 
within the lesioned motor networks of stroke patients (Bönstrup 
et al., 2018). Despite their usefulness, task-based studies tend to be 
limited to stroke participants who can perform the tasks and can 
result in mirror movements that confound the results of the study 
(Calautti et al., 2007; Dong et al., 2006; Ward et al., 2007; Weiller 
et al., 1993; Wittenberg et al., 2000).

Resting-state paradigms, where participants remain still and re-
laxed, have the advantage of including participants of all functional 
abilities and are easier and quicker to administer than task-based 
paradigms. After stroke, resting-state EEG shows increased bilat-
eral power in the delta and theta bands as well as increased power 
asymmetries between hemispheres (Assenza et al., 2013; Köpruner & 
Pfurtscheller, 1984; Wang et al., 2012). EEG resting-state studies have 
also reported decreased connectivity in the alpha and beta bands 
within the lesioned area (Dubovik et al., 2012, 2013; Wu et al., 2015).

The alteration of resting-state EEG frequency characteristics 
after stroke may be representative of underlying structural changes. 
Brain networks with a large neuronal population or spatial extent 
oscillate at lower frequencies (Bullock et  al.,  1995; Eckhorn,  1994; 
Kopell et  al.,  2000; von Stein & Sarnthein, 2000). This observation 
led Nunez to develop a theoretical framework for the inverse rela-
tionship between frequency of activity and spatial scale of a network 
(Nunez,  2000). Further, local sensory integration invokes gamma 
band activity, multisensory integration produces upper alpha and 
lower beta band activity, while long-range interactions involve theta 
and alpha band activity (von Stein & Sarnthein, 2000). Gamma band 
synchronization decreases with distance, with lower frequency oscil-
lations associated with longer-range interactions (Bullock et al., 1995; 
Eckhorn, 1994; Kopell et al., 2000). These cortical network frequency 
dependencies arise from the physical architecture of the networks, 
speed of communication due to axon conduction/synaptic delays, and 
the number of synapses involved in the network path (Nunez, 1995; 
von Stein et al., 2000). Thus, it is important to consider spectral in-
formation in the interpretation of EEG activity and connectivity data.

While resting-state EEG networks in people with stroke indi-
cate frequency specific changes in cortical activity and connectivity, 
there are elements of the analysis that confound the identification 
of the networks and hamper interpretation of the resulting data. The 
analysis of resting-state EEG is influenced by electrode impedance, 
neuronal density under each electrode and volume conduction. 
The power of resting-state EEG is affected by electrode impedance 
such that electrodes with lower impedance display higher power. 
In addition, larger synchronous neuronal populations beneath an 
electrode produce greater signal power, which may influence inter-
pretation of the signal size, especially in people with loss of brain 
tissue after stroke. EEG estimates of functional connectivity are 
also affected by volume conduction. Volume conduction results in 
significant connectivity between EEG electrodes that can extend 
over distances of up to 8 cm (Nunez et al., 1997), even if the cortical 
regions immediately below the electrodes are not functionally con-
nected. Imaginary coherence (Nolte et al., 2004), orthogonalization 
techniques (Brookes et al., 2012; Hipp et al., 2012), and other phase 
metrics that exclude zero lag connectivity (Nolte et al., 2008) can be 
used to mitigate this issue.

In this study, we set out to quantify the changes in resting-state 
cortical network power and connectivity in people with chronic 
stroke. We collected EEG data while participants were in a relaxed, 
resting state. EEG power was normalized to reduce bias and used 
as an indicator of network activity. Correlations of orthogonalized 
EEG activity were used to measure functional connectivity between 
cortical areas. We hypothesized that cortical networks are more 
asymmetric after stroke and that there is a shift in the frequency 
due to changes in cortical communication after stroke. Specifically, 
we expected cortical networks to have a higher reliance on local net-
work activity with less efficient pathways connecting local regions, 
resulting in a shift to higher frequency.

2  | MATERIAL S AND METHODS

2.1 | Participant population

A sample of 14 chronic stroke participants and 11 age-matched 
neurologically intact controls participated in this study. Stroke 
participants (8 male, aged 36–79  years) were required to be at 
least 1-year poststroke. Prior to the study, participants completed 
a questionnaire and were asked to self-report known sensory and 
motor deficits, including visual deficits due to either physical defi-
cits (e.g., homonymous hemianopsia) or to inattention disorders. 
Exclusion criteria included the diagnosis of any other neurological 
disorder or recent treatment that interfered with neuromuscular 
function, such as botulinum toxin injection. The impairment level 
of stroke participants was assessed using the upper extremity 
Fugl-Meyer Assessment (FMA) which consists of a motor portion 
(maximum score 66) and sensory/proprioception portion (maxi-
mum score 12; Fugl-Meyer et al., 1975) and the Semmes-Weinstein 
monofilament test (Semmes et al., 1960). The monofilament test 
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was performed at seven locations on the palmar surface of the 
paretic hand and averaged (distal phalanx of the small finger, index 
finger and thumb; proximal phalanx of the small and index finger; 
thenar, and hypothenar). Control participants (7 male, aged 34–
77 years) reported no history of stroke or any other neuromuscu-
lar pathology. Detailed demographic data for all participants are 
shown in Table 1. All participants gave written informed consent, 
and all procedures were approved by the Marquette University 
Institutional Review Board in accordance with the Declaration of 
Helsinki.

2.2 | Experimental protocol

During the study, participants were seated in a chair and asked to re-
main as still as possible, keep their eyes closed, refrain from making 

any eye movements, and clear their mind. EEG data were collected 
for approximately 3 min in this relaxed, resting state.

2.3 | Physiological measurements

A 64-channel active electrode actiCAP (Brain Products GmbH) sys-
tem was used to record EEG data. EEG electrodes were arranged in 
the conventional 10–20 system with the reference at FCz and the 
ground at AFz. The EEG cap was placed on the participant's head 
such that the Cz electrode was in line with the preauricular points in 
the frontal plane and with the nasion and inion points in the sagittal 
plane. SuperVisc gel (Brain Products GmbH) was applied between 
the scalp and electrodes to lower the electrode impedances below 
10 kOhms prior to data collection. EEG data were amplified, sampled 
at 1  kHz, filtered from 0.1 to 200  Hz and notch filtered at 60  Hz 

TABLE 1 Demographic and clinical data for stroke (S) and control (C) participants.

Subject Identifier Sex
Age 
(year)

Time after Stroke 
(year)

Fugl-Meyer 
(Motor:66)

Fugl-Meyer 
(Sensory:12)

Monofilament 
(g,sensation)

S1 F 60 23 63 12 0.08 (-)

S2 F 79 7 62 11 0.15 (-)

S3 F 67 30 29 12 0.05 (N)

S4 M 57 2 28 6 134.29 (---)

S5 M 64 16 61 8 0.19 (-)

S6 F 66 26 51 4 60.00 (---)

S7 M 61 11 31 12 0.35 (-)

S8 F 65 13 38 8 94.29 (---)

S9 M 64 14 34 12 50.28 (---)

S10 M 59 14 23 8 60.00 (---)

S11 M 73 7 21 8 100.00 (---)

S12 M 36 8 21 8 71.43 (---)

S13 F 71 4 30 12 0.01 (N)

S14 M 55 15 27 12 37.43 (---)

C1 F 68 - - - -

C2 M 64 - - - -

C3 M 61 - - - -

C4 M 51 - - - -

C5 F 77 - - - -

C6 F 57 - - - -

C7 M 67 - - - -

C8 M 65 - - - -

C9 F 63 - - - -

C10 M 34 - - - -

C11 M 64 - - - -

Note: “Fugl-Meyer” indicates the Fugl-Meyer upper extremity score (Motor: maximum of 66; Sensory: maximum of 12). Monofilament values indicate 
the average force in grams (g) across the seven hand locations tested with the degree of sensation (N: normal (g < 0.07), “-”: diminished light tough 
(0.07 > g < 0.4), “--”: diminished protective sensation (0.4 > g < 2.0), “---”: loss of protective sensation (2.0 > g < 180.0), “----”: deep pressure sensation 
only (g > 180)). (F: female; M: male; ND: non-dominant)
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using a Synamps2 amplifier system (Neuroscan), and recorded using 
the Neuroscan software, Scan 4.5. The data that support the find-
ings of this study are available from the corresponding author upon 
reasonable request.

2.4 | Data analysis

Electroencephalography data were postprocessed and ana-
lyzed using the EEGLAB toolbox (version v13.4.4b; Delorme & 
Makeig, 2004) for storing and configuring the data, FieldTrip (ver-
sion 2016-01-03; Oostenveld et  al.,  2011) for removing bad ep-
ochs and electrodes, Brainstorm (version 3.4; Tadel et al., 2011) for 
source localization, Network Based Statistic Toolbox (version 1.2; 
Zalesky et al., 2010) for statistically comparing network connectiv-
ity, BrainNet Viewer (version 1.62; Xia et  al.,  2013) for visualizing 
network connectivity and custom MATLAB scripts (version 2014a, 
MathWorks, Natick, Massachusetts). All EEG data were bandpass 
filtered (1-50 Hz) using a fourth order zero-phase Butterworth filter. 
Trial epochs of the EEG data were then extracted by creating 2 s, 
consecutive, nonoverlapping windows starting at the beginning of 
the file and continuing until a complete 2  s window could not be 
formed. This process resulted in approximately 90 epochs per par-
ticipant. EEG epochs were then zero-meaned, and bad channels and 
epochs removed manually using FieldTrip's visual inspection code 
(channel/epoch removed if variance/kurtosis >2 standard deviations 
from the mean, “ft_rejectvisual,” average number channels/epochs 
removed, 0.8/10.4, per subject). If a channel was rejected from the 
EEG data, its value was replaced with interpolated data from the 
surrounding electrode channels. Stroke participant EEG data were 
flipped so that the hemisphere associated with the lesion was always 
represented on the left. EEG data were then separated into signal 
and artifactual components using an adaptive mixture independent 
component analysis (AMICA; Palmer et al., 2008), with 64 independ-
ent temporal components. Signal artifacts, including electromyogra-
phy and movement artifacts, were identified by distinct artifactual 
characteristics (Delorme et al., 2012; Makeig et al., 2004; Mognon 
et al., 2011; Puce & Hämäläinen, 2017) and removed from the EEG 
data (average number of artifact components removed, 6.6; mini-
mum number: 3; maximum number: 15). The remaining components 
were then transformed back to the EEG channel space. Finally, EEG 
data were re-referenced to a common average reference for all data 
analyses. The re-reference technique reintroduced the FCz elec-
trode to the data set. For the following analyses, EEG data were sep-
arated into ten non-overlapping 5 Hz frequency bands ranging from 
1 to 50 Hz (first band only ranged from 1–5 Hz due to the 1 Hz high 
pass filter applied during preprocessing) to determine whether fre-
quency shifts occurred in the stroke group relative to the controls.

A power spectrum analysis was performed at the electrode level 
to examine the spatial characteristics of resting-state EEG power 
across frequency bands. The power spectrum at every electrode was 
calculated using Welch's method with epochs as the measure of con-
sistency (Welch, 1967). The frequency bands were then extracted 

from the power spectrum and normalized at each electrode using 
Equation 1,

where NP represents the normalized power, 
∑

F represents the sum 
of power within a frequency band, and 

∑
Total represents the sum of 

power across the frequency spectrum (1–50 Hz). By normalizing power 
in this fashion, we could determine whether the cortical area's func-
tion (distribution of power across the spectrum) was changing while 
removing any dependence on electrode impedance or neuronal pop-
ulation size. To characterize any effects that stroke lesions may have 
on the spatial distribution of frequency, the control and stroke groups 
were compared at every electrode within each frequency band using 
a two-sample t test with a false discovery rate (FDR) of α = 0.05 for 
multiple comparisons correction. To facilitate interpretation of normal-
ized power, average absolute power within frequency bands was com-
puted and plotted for each electrode to determine whether normalized 
power differences between controls and stroke survivors were due to 
true absolute power changes within frequency bands or if a normaliza-
tion bias was driving the normalized power differences. For instance, 
a loss of absolute power in one frequency band could result in normal-
ized power increases in other frequency bands, even though they are 
not changed on an absolute level. Similar to normalized power, absolute 
power for control and stroke groups was compared at every electrode 
within each frequency band using a two-sample t test with a false dis-
covery rate (FDR) of α = 0.05 for multiple comparisons correction.

To determine whether frequency bands displayed power dif-
ferences between hemispheres, an electrode directional asymme-
try metric was computed between analogous electrodes in the two 
hemispheres using Equation 2,

where EDA is the whole head electrode directional asymmetry, NPL is 
the normalized power of the homologous electrode in the left hemi-
sphere, NPR is the normalized power of the homologous electrode 
in the right hemisphere, and n is the total number of electrode pairs. 
Electrodes along the midline were ignored for calculation of the EDA. 
This metric resembles the brain symmetry index created by van Putten 
and colleagues (van Putten et al., 2004); however, it has been modified 
to allow for the directionality of any asymmetries to be identified simi-
lar to what was done by Saes and colleagues (Saes et al., 2019).

Volume source localization of EEG data was performed to en-
able volumetric connectivity analyses. Distributed current dipole 
volumes were computed in Brainstorm using the default MNI/
ICBM152 anatomical brain template with the cerebellum included 
(Tadel et al., 2011). The standard actiCAP electrode locations were 
fit to the scalp surface so that the Cz electrode location was at the 
vertex as described in the physiological measurements section. A 
boundary element model (BEM) was used to estimate the forward 
model (OpenMEEG; Gramfort et al., 2010; Kybic et al., 2005) with 

(1)NP = 100 ×

∑
F

∑
Total

,

(2)EDA = 100 ×
1

n

∑ NPL − NPR

||NPL
|| + ||NPR

||
,
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volumetric vertices (5 × 5 × 5 mm) placed on a regular grid span-
ning the entire brain. A depth-weighted minimum L2 norm estima-
tor of current density (Hämäläinen & Ilmoniemi, 1994) was used to 
estimate the inverse model where each vertex consisted of three 
orthogonal dipoles (representing the x, y, and z directions). The 
three-dimensional dipole activity for every vertex was subsequently 
processed using a principal component analysis (PCA) to obtain a sin-
gle activity time course that best represented the volumetric source.

Following the projection of EEG data into volumetric source 
space, the functional connectivity between all brain regions was 
calculated within the defined frequency bands, Figure 1. First, the 
source localized data were bandpass filtered using a zero-phase 
fourth order Butterworth filter to extract the different frequency 
bands; the resulting data were then concatenated across epochs 
within frequency bands. A reduced version (described below) of 
the Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer 
et al., 2002) from the micron software package (https://people.cas.
sc.edu/rorde​n/mricr​on/index.html) was used to define volumes of 
interests (VOI) for input into the connectivity analysis. Reductions to 

the original AAL atlas VOIs were necessary because we intended to 
orthogonalize the VOI time courses to reduce the effect of volume 
conduction on connectivity analyses. Orthogonalization by way of 
a symmetric multivariate correction (Colclough et  al.,  2015) is de-
pendent on the rank of the data (which was limited to 61 due to one 
participant only having a maximum of 61 valid electrodes after pre-
processing). Therefore, we reduced the original 116 AAL atlas VOIs 
to 61 VOIs, Figure 1. The 12 subcortical structures (left and right) 
were left unaltered, while the 9 cerebellar VOIs within each hemi-
sphere and 8 vermis VOIs were merged, respectively. The 34 cor-
tical VOIs in the left hemisphere were reduced to 23 iteratively by 
finding the smallest VOI and merging it with the nearest VOI based 
on VOI centroid locations. The homologous VOIs merged in the left 
hemisphere were then merged in the right hemisphere to maintain a 
symmetrical VOI distribution.

Once the reduced AAL atlas was defined, PCA was performed 
across the voxel time courses within each VOI with the largest com-
ponent of the PCA retained, resulting in a single activity time course 
that best represented each VOI. All VOI time courses were then 

F I G U R E  1   Diagram of connectivity workflow and the 10–15 Hz frequency band connectivity for a single stroke participant (S14) 
thresholded at a z-score of ±2. After preprocessing, EEG data were projected into a volumetric source space where a PCA was applied to 
each three-dimensional dipole to extract the time course that best represented the dipole's activity. The brain was then segmented into 
61 VOIs based on a reduced AAL atlas. All VOIs were filtered voxel-wise to extract the frequency bands of interest, and PCA was applied 
to reduce the dipole activity within the VOIs to a single time course. For each frequency band, VOI time series were orthogonalized after 
which the envelope of the VOI activity was obtained via the Hilbert transform. Correlations between the envelopes of VOI activity were 
performed within frequency bands to characterize connectivity between VOI’s. For the representative stroke subject shown (S14), the 
hemisphere associated with the stroke lesion is displayed on the left. Stronger connections between nodes are represented by larger z-
scores and line widths. Node size indicates the number of connections a node makes with other nodes
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orthogonalized using a symmetric multivariate correction with twenty 
iterations (Colclough et al., 2015) to reduce the EEG volume conduction 
artifact and spatial leakage that results from source localization esti-
mates. Power envelopes of the orthogonalized VOI time courses were 
then calculated by taking the absolute value of their Hilbert transform, 
a similar approach for calculating activity envelopes has been done in 
previous studies (Brookes et al., 2011; Hipp et al., 2012). VOI power 
envelopes were then correlated within frequency bands resulting in 
a connectivity matrix of correlation coefficients that was 61 (number 
of VOIs) by 61 (number of VOIs) by 10 (number of frequency bands) 
for each participant. Connectivity correlation coefficients were Fisher 
z-transformed to normalize the sample distribution for statistical anal-
ysis. An additional normalization was performed across frequency 
bands to account for the inverse relationship between correlation and 
frequency band for a fixed time window. For the bias normalization, 
we performed a Monte Carlo simulation using 1,000 iterations on the 
pipeline described above by randomizing the VOI time series phase in-
formation while retaining the magnitude information. This resulted in a 
random “noise” correlation distribution for each participant, frequency 
band and VOI-to-VOI interaction. The true Fisher z-transformed con-
nectivity data were then bias corrected by subtracting the mean and 
dividing by the standard deviation of the random “noise” distributions 
converting the true connectivity data to a z-score relative to the null 
distribution.

To determine whether frequency bands displayed connectivity 
differences between hemispheres, a connectivity directional asym-
metry metric was computed between analogous connections in the 
two hemispheres using Equation 3,

where CDA represents the whole brain connectivity directional asym-
metry metric, CL represents the connectivity of the homologous con-
nections in the left hemisphere, CR represents the connectivity of the 
homologous connections in the right hemisphere, and n represents the 
total number of homologous connection pairs. Connectivity between 
homologous regions was ignored.

To visualize frequency dependent shifts in the stroke population 
relative to the control population, connectivity spectra (connectivity 
vs. frequency) were plotted for connections within the left (lesioned) 
and right (non-lesioned) hemispheres. To quantify deviations in the 
shape of the connectivity spectrum from the control group, the 
connectivity spectrum of each participant (control and stroke) was 
correlated with the average connectivity spectrum from the control 
population. Finally, connectivity spectrum correlation values were 
Fisher z-transformed to normalize the sample distribution for sta-
tistical testing.

The Network Based Statistic toolbox (Zalesky et al., 2010) was 
used at the group level to identify significantly connected net-
works in the control and stroke groups and networks that were 
significantly different between sample groups. The Network Based 
Statistic, a graph analogue of cluster-based statistical methods, used 

permutation testing to control the family-wise error rate (p <.05) as-
sociated with multiple comparisons tests based on the extent (num-
ber of connections in a network) of the network above a predefined 
(defined by the user) threshold. For our analysis, we tested networks 
that were either positively or negatively correlated between VOI’s. 
We modified the Network Based Statistic code (added the capability 
to perform one-sample t tests) to compute the network statistics 
within the control (threshold: t-value  =  3.169) and stroke (thresh-
old: t-value  =  3.012) groups using a one-sample t test (thresholds 
for both groups were equivalent to a two-tailed one-sample t test 
p-value of .01). Significant differences between the networks of 
control and stroke groups (threshold: t-value = 2.5) were identified 
using a two-sample t test applied to the Network Based Statistic (the 
threshold for differences between groups was equivalent to a two-
tailed two-sample t test p value of .02).

2.5 | Statistical analysis

Changes in electrode and connectivity directional asymmetry were 
characterized across subjects using a two-way mixed ANOVA with 
frequency as the within-subject factor and group as the between-
subject factor in the analysis. One-way ANOVAs and t tests were ap-
plied post hoc to characterize specific interaction effects identified in 
the two-way ANOVAs. Changes in the connectivity spectra correla-
tion between groups were characterized by using a two-sample t test. 
If Mauchly's Test of Sphericity indicated that the assumption of sphe-
ricity was violated, a Greenhouse–Geisser correction was used for the 
ANOVA results. The Holm–Sidak method for correcting for multiple 
comparisons was used at each level (between multiple ANOVAs and 
t tests) of the analysis except for the pairwise comparisons where 
the Tukey post hoc test was applied. Raw p-values were reported 
and stated as significant if they survived the correction for multiple 
comparisons. A non-parametric bootstrap approach similar to the 
Zhou and Wong method (Zhou & Wong, 2011) with 10,000 iterations 
was used to generate the statistical distributions for the Tukey post 
hoc test. Statistical tests were performed with a Type I error rate of 
α = 0.05. If significant differences were identified between the control 
and stroke groups for the electrode normalized power distributions, 
electrode directional asymmetry, connectivity directional asymme-
try, connectivity spectra, or connectivity networks analysis, a simple 
linear regression analysis was performed with the variable of inter-
est and the upper extremity motor FMA for the stroke participants. 
Plots were displayed whether the regression analysis was significant 
(p < .05). Data are reported as mean ± SD unless stated otherwise.

3  | RESULTS

3.1 | Normalized power: Control population

Electrode level normalized power was examined to identify the spa-
tial distribution of power across electrodes for each frequency band 

(3)CDA = 100 ×
1

n

∑ CL − CR

||CL
|| + ||CR

||
,
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of interest and to determine whether the power distribution was 
different between control and stroke groups (Figure 2a). In the con-
trols, the lower half of the frequencies examined (1-25 Hz) accounted 
for ~85% of the total power while the upper half of the frequencies 
(25–50 Hz) contributed ~15%. The regions that contributed the most 
power in the 1–5 Hz frequency band were located above the bilat-
eral frontal cortices while for the 5–10 Hz band, the power was larg-
est above the medial frontal cortices and the medial/lateral parietal 
cortices. There was a posterior to anterior shift in the regions that 
contributed the most power for the frequency bands ranging from 
10 to 50 Hz, with regions located above the bilateral visual cortices 
for the 10–15 Hz band, two nodes located above the bilateral pari-
etal/sensory/motor cortices for the 15–20 Hz band, a region located 
above the bilateral motor/premotor cortices for the 20–25 Hz band, 
a region located above the bilateral premotor/frontal cortices for the 

25–30 Hz band, and regions located over the bilateral frontal cortices 
for the remaining frequency bands (30–50 Hz).

3.2 | Normalized power differences

The normalized power of the stroke group was similar to the con-
trols, particularly for the distribution of power across frequency 
bands. However, within frequency bands the normalized power 
from 1–10 and 30–50 Hz was larger in the stroke group while the 
normalized power from 10 to 25 Hz was smaller in the stroke group 
when compared to the control group (Figure 2a). In general, absolute 
power within frequency bands displayed differences between the 
stroke and control groups similar to the normalized power. Absolute 
power from 1–10 and 30–50 Hz was larger in the stroke group while 

F I G U R E  2   Electrode power and linear regression analysis during resting state. The hemisphere associated with the stroke lesion is 
displayed on the left. (a) Topographic maps of the normalized electrode power averaged across participants are shown for each group and 
frequency band of interest. Black dots indicate electrodes whose power was significantly different between the control and stroke groups, 
using an FDR correction of α = 0.05 (please refer to Figure S1 for an alternative visualization of significant power differences). Values are 
interpolated between electrodes for visualization purposes. (b and c) Linear regression of the stroke group normalized power averaged 
across significantly different electrodes and upper extremity motor FMA scores for the 10–15 and 15–20 Hz frequency bands, respectively. 
Normalized power for each frequency band was plotted against a perfect upper extremity motor FMA of 66 for controls
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the absolute power from 10 to 25 Hz was smaller in the stroke group 
when compared to the control group (Figure S2).

To assess significant changes in spatial power distribu-
tion, normalized power was compared between the control and 
stroke groups at every electrode within each frequency band. 
Even though there were changes in power across all frequency 
bands examined, only the 10–15 and 15–20 Hz frequency bands 
resulted in significant differences (p  <.05) following FDR cor-
rection. In the stroke group, the 10–15 Hz band contained signifi-
cantly less power across the entire brain except above the right 
(non-lesioned) visual cortex (averaged across significantly differ-
ent electrodes; control group: 20.18 ± 6.42% total power; stroke 
group: 12.6 ± 4.94% total power) while the 15–20 Hz band con-
tained significantly less power across electrodes located over the 
left (lesioned) sensory/parietal cortices (Figure 2a) compared with 
controls (averaged across significantly different electrodes; con-
trol group: 10.08 ± 4.05% total power; stroke group: 5.6 ± 2.57% 
total power). Across significantly different electrodes, average 
normalized power was significantly related to motor function 
(upper extremity motor FMA) in both the 10–15 and 15–20  Hz 
bands (R2 = 0.47, p =.007 and R2 = 0.48, p =.006, respectively; 
Figure 2b,c). When assessing significant changes in spatial power 
distribution of absolute power between the control and stroke 
groups at every electrode within each frequency band, no fre-
quency bands revealed electrodes with significant differences 
following FDR correction (Figure S2).

3.3 | Normalized power asymmetry

In addition to the differences in normalized power, the power to-
pographies for the stroke group were more asymmetric when com-
pared to those of the control group (Figure 2a). In the stroke group, 
power in the 1–10 Hz frequency bands showed larger power in the 
left (lesioned) hemisphere while the 10–50  Hz frequency bands 
exhibited larger power in the right (non-lesioned) hemisphere. The 
two-way ANOVA for differences in electrode directional asym-
metry indicated a main effect of frequency (F(2.70,62.04) = 6.47, 
p  =.001) and group (F(1,23)  =  16.21, p  =.001) with an interac-
tion effect between frequency and group (F(2.70,62.04)  =  6.88, 
p =.001). The post hoc two-sample t tests for group differences 
within frequencies indicated that the frequency bands ranging 
from 15 to 50  Hz (averaged across 15–50  Hz frequency bands; 
control group: 1.31 ± 4.73%; stroke group: −12.27 ± 9.84%) were 
significantly (t(23) > 2.99, p < .007) more asymmetric in the stroke 
group with the power being larger in the right (non-lesioned) 
hemisphere, Figure 3. The 5–10 Hz (control group: −0.84 ± 1.24%; 
stroke group: 5.48 ± 9.02%) frequency band approached signifi-
cance (t(23)  =  2.02, p  =.055) with more power found in the left 
(lesioned) hemisphere while the frequency bands from 1–5  Hz 
(control group: 2.0  ±  4.53%; stroke group: 5.48  ±  11.22%) 
and 10–15  Hz (control group: −1.09  ±  3.16%; stroke group: 
−6.37 ± 11.52%) were not significantly (t(23) < 1.47, p > .15) differ-
ent between the control and stroke groups. The post hoc one-way 
ANOVAs for frequency showed significant differences between 
frequencies for the stroke group (F(2.40,31.16) = 9.83, p =.0003) 
but not the control group (F(2.32,23.21) = 0.76, p =.498). The post 
hoc analysis (Tukey test) of frequency within the stroke group in-
dicated that the electrode directional asymmetry was significantly 
different between the frequency bands in the 1–10 Hz range and 
all other frequency bands (q(117) > 4.91, p < .025) while no other 
frequency bands showed significant differences (q(117)  <  3.56, 
p > .27). Linear regression analysis of electrode directional asym-
metry (for significantly different frequency bands) and function 
(upper extremity motor FMA) indicated that directional asymme-
try was not a good predictor of motor function (R2 < 0.2, p > .11).

3.4 | Functional connectivity: Networks

Networks identified via functional connectivity analysis were exam-
ined to identify the spatial extent of connectivity for each frequency 
band of interest and to determine whether the connectivity spectra 
were different between stroke and control groups. No networks de-
fined by negative correlations were found in the control (p > .9568) 
or stroke groups (p > .9999). All networks described below resulted 
from positive correlations between VOIs in the control (p < .0008) 
and stroke (p < .0002) groups. In the control group, connectivity was 
stronger (i.e., higher correlations) and more extensive at lower fre-
quencies (1–20 Hz), which peaked in the 5–15 Hz frequency range. In 
contrast, higher frequencies (25–50 Hz) exhibited fewer connections 

F I G U R E  3   Directional asymmetry in electrode power during 
resting-state EEG. The directional asymmetry in electrode 
power averaged across participants is shown for each group and 
frequency band of interest. Positive asymmetry values indicate 
that the frequency band had larger normalized power in the left 
(lesioned) hemisphere while negative asymmetry values indicate 
the right (non-lesioned) hemisphere had larger normalized power. 
Error bars denote the 95% confidence interval about the mean. 
Significant differences determined via post hoc analysis (Tukey test) 
are indicated by stars (*p <.05, **p <.01, and ***p <.001)
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that tended to be located in the anterior half of the brain (Figure 4a). 
Connectivity spectra for the control group in the left and right hemi-
spheres (Figure 4b,c), mirrored the frequency dependences shown 
in the network plots (Figure 4a). The high connectivity in the lower 
frequencies (1–20 Hz) sloped downward until it reached a plateau in 
the higher frequencies (25–50 Hz).

The stroke group showed similarities to the control network 
patterns; however, there were also notable differences. Lower 
frequencies (1–20  Hz) had more extensive functional connectivity 
throughout the brain while higher frequencies (25–50 Hz) had fewer 
connections that tended to be located in the anterior half of the 
brain (Figure 4a). However, for the stroke group, connectivity in the 
5–20 Hz frequency bands tended to be more asymmetric with lower 

connection strength occurring in the left (lesioned) hemisphere. 
Conversely, stroke networks in the 25–50 Hz frequency bands con-
tained more (and larger) connections. The two-way ANOVA for dif-
ferences in connectivity directional asymmetry indicated that there 
was a main effect of frequency (F(4.58,105.24) = 2.89, p =.003), no 
effect of group (F(1,23)  =  0.75, p  =.109), and a trend toward sig-
nificance in the interaction effect between frequency and group 
(F(2.26,105.24) = 4.58, p =.06). The post hoc analysis (Tukey test) 
of frequency indicated that the connectivity directional asymme-
try was significantly different between the 10–15  Hz band and 
the 1–5/40–45  Hz bands (q(216)  >  4.73, p <  .03), trended toward 
a significance difference between the 1–5 Hz and 15–20 Hz bands 
(q(216) = 4.27, p =.08) and showed no differences for the remaining 

F I G U R E  4   Functional connectivity networks and connectivity spectra during resting state. The hemisphere associated with the stroke 
lesion is displayed on the left. (a) Networks deemed significantly connected within control (p < .0008) and stroke (p < .0002) groups are 
shown for each frequency band of interest. Stronger connections between nodes are represented by larger z-scores (color) and line widths. 
Node size indicates the degree of connectivity (number of connections a node makes with other nodes) and is normalized by the maximum 
degree within each frequency band of interest for each group. Please refer to Figure S3 for an alternative visualization of functional 
connectivity networks. (b and c) Left (lesioned) and right (non-lesioned) hemisphere connectivity spectra, respectively. Average connectivity 
of all connections (not just the significantly connected connections) within the for each frequency band of interest. Shaded areas indicate 
the 95% confidence interval about the mean
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frequencies (q(216) < 4.07, p > .119). While there was no significant 
interaction effect between frequency and group for the connectiv-
ity asymmetry analysis (p =.06), the stroke group data did seem to 
drive the results found in the main effect of frequency. In general, 
the stroke group had larger connectivity directional asymmetry in all 
bands with the 5–25 Hz bands (averaged across 5–25 Hz frequency 
bands; control group: 0.04 ± 2.69%; stroke group: −3.29 ± 5.52%) 
displaying larger connectivity in the right (non-lesioned) hemisphere 
and 1–5/25–50 Hz bands (averaged across 1–5/25–50 Hz frequency 
bands; control group: 0.65 ± 2.07%; stroke group: 2.28 ± 3.18%) dis-
playing larger connectivity in the left (lesioned) hemisphere.

When comparing the connectivity spectra between groups 
(Figure  4b,c), the left (lesioned) hemisphere (control group: 
1.37  ±  0.49 Fisher Z; stroke group: 0.52  ±  1.02 Fisher Z) was 

significantly different (t(23)  =  2.55, p  =.018) while the right (non-
lesioned) hemisphere (control group: 1.28  ±  0.43 Fisher Z; stroke 
group: 0.92 ±  0.67 Fisher Z) showed no differences (t(23) =  1.08, 
p  =.29) between stroke and controls. The only noticeable differ-
ences in the right (non-lesioned) hemisphere connectivity spectrum 
of the stroke group were that it peaked in the 1–10 Hz range instead 
of the 5–15 Hz range while the connectivity in the 10–20 Hz fre-
quency was slightly lower. On the contrary, the left (lesioned) hemi-
sphere of the stroke group displayed a different spectrum entirely, 
peaking in the 1–5 Hz frequency band, sloping downward until the 
15–20 Hz frequency band and gradually increasing throughout the 
15–50 Hz frequencies. The stroke group's left (lesioned) hemisphere 
connectivity spectrum also showed a decrease in connectivity for 
the 5–25 Hz frequency bands and an increase in connectivity for the 
25–50 Hz bands when compared to the control group. Linear regres-
sion analysis of the left connectivity spectrum and function (upper 
extremity motor FMA) showed a limited correspondence between 
measures (R2 = 0.18, p =.13).

3.5 | Functional connectivity: Different networks

To better visualize and quantify the changes between resting-
state connectivity in the control and stroke groups, we identified 
networks that were significantly different between groups within 
each frequency band of interest (Figure 5a). Note that here we de-
fine “network” as a group of connections within a frequency band. 
Networks with significantly larger connectivity in the control 
group occurred in the 10–15 Hz (p =.05; average network connec-
tivity; control group: 0.90 ± 0.48 z-score; stroke group: 0.59 ± 0.24 
z-score) and 15–20 Hz (p =.03; average network connectivity; con-
trol group: 0.77 ± 0.44 z-score; stroke group: 0.50 ± 0.21 z-score) 
frequency bands. In the stroke group, one network showed sig-
nificantly larger connectivity in the 35–40 Hz (p =  .031; average 
network connectivity; control group: 0.44 ± 0.36 z-score; stroke 
group: 0.59  ±  0.54 z-score) frequency band while another net-
work in the 30–35  Hz frequency band approached significance 
(p  =.066). No other frequency bands contained significantly dif-
ferent networks (p > .18). The 10–15 and 15–20 Hz networks with 
significantly larger connectivity in the control group included con-
nections throughout the brain; however, there were more connec-
tions in the left (lesioned) hemisphere compared with the right 
(non-lesioned) hemisphere (Figure  5a,b). The 10–15  Hz network 
included nodes with high degree (degree > 4) located in the left in-
ferior frontal, middle frontal, middle/inferior occipital, middle/su-
perior temporal pole and right middle/superior temporal pole, and 
heschl/rolandic operculum/superior temporal regions with the 
highest degree occurring in the left cerebellum (degree = 8). The 
15–20 Hz network included nodes with high degree (degree > 4) 
located in the left inferior frontal, superior frontal, heschl/rolandic 
operculum/superior temporal, cerebellum and right lingual, middle 
temporal, inferior/middle occipital, cuneus/superior occipital re-
gions with the highest degree occurring in the left angular/inferior 

F I G U R E  5   Resting-state functional connections with 
statistically significant differences (p < .05) between control and 
stroke groups. The hemisphere associated with the stroke lesion 
is displayed on the left. (a) Networks with statistically significant 
differences across frequency bands. Z-values correspond to the 
differences between the control and stroke groups with a positive 
or negative z-value indicating stronger connections in the control 
or stroke group, respectively. Larger differences in connectivity 
are also denoted by larger line widths between nodes. Node size 
indicates the degree (number of connections a node makes with 
other nodes) and is normalized by the maximum degree within 
each frequency band of interest. Please refer to Figure S4 for 
an alternative visualization of functional connectivity networks. 
(b) Comparison of the numbers of inter- and intrahemispheric 
connections within networks that were significantly different 
between groups
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parietal and left postcentral/supramarginal regions (degree  =  6). 
The 35–40 Hz network present in the stroke group was localized 
toward the anterior portion of the brain with an equal number of 
connections in the left (lesioned) and right (non-lesioned) hemi-
spheres (Figure 5a,b) The 35–40 Hz network included nodes with 
high degree in the right superior frontal gyrus (degree  =  4) and 
right amygdala (degree = 5). In all three networks with between-
group differences, approximately 50% of the connections oc-
curred between hemispheres (Figure 5a,b). For the networks that 
were different between groups, no significant relationship was 
found between average connectivity and motor function (upper 
extremity motor FMA, R2 < 0.05, p > .43).

4  | DISCUSSION

4.1 | Main Results

In this study, we set out to identify the changes in resting-state cor-
tical signal power and connectivity in people with chronic stroke. 
We hypothesized that cortical activity (power) and connectivity 
are more asymmetric after stroke and that there is a shift in the 
frequency of cortical communication. The results demonstrated 
that cortical activity patterns after stroke display asymmetric pat-
terns and that shifts in the frequency of communication occur. 
Specifically, during resting state, stroke cortical network activity 
(EEG normalized power) in the upper frequency ranges (15–50 Hz) 
became more asymmetric (electrode directional asymmetry) with 
less activity occurring in the lesioned hemisphere (Figures 2 and 
3). The cortical network activity identified in stroke was lower in 
the alpha and lower beta bands (10–20 Hz), suggesting a disrup-
tion of normal cortical activity (Figure  2). The level of network 
connectivity in the stroke group (correlation of orthogonalized 
EEG band envelope activity) was reduced in the alpha and beta 
bands (10–20  Hz) and increased in the gamma band (35–40  Hz) 
when compared to controls (Figures 4 and 5). These differences in 
connectivity were driven by changes occurring within the lesioned 
hemisphere (Figures  4 and 5). The shift from typical alpha/beta 
band connectivity to increased gamma band connectivity sug-
gests an alteration to more local cortical networks after stroke. 
The presence of decreased cortical activity, increased cortical ac-
tivity asymmetries, and shifts in cortical connectivity indicate the 
disruption of typical cortical networks and an alteration to more 
local networks after stroke.

4.2 | Patterns of resting-state power

In controls, lower frequencies contributed the most to the total 
power with different frequency bands exhibiting different spa-
tial topographies (Figures 2 and 3). Areas with larger normalized 
power were located above the bilateral frontal cortices for the 
1–5  Hz band, above the medial frontal cortices and the medial/

lateral parietal cortices for the 5–10  Hz band while there was a 
bilateral posterior to anterior shift for the frequency bands rang-
ing from 10 to 50 Hz. Previous EEG studies examining resting state 
have shown similar topography patterns for the delta (1–4  Hz), 
theta (4–8 Hz), alpha (8–12 Hz), and gamma (>30 Hz) bands with 
lower frequencies containing higher power; however, spatial to-
pographies for the beta (13–30 Hz) band in previous studies were 
found to be focused above the bilateral occipital regions (Barry 
et al., 2007; Chen et al., 2008; Qin et al., 2010). The differences 
in beta band spatial topography between our results and previ-
ous literature was due to our choice to normalize the power. We 
chose to normalize power to remove the influence of electrode 
impedance and underlying population size on absolute power 
measures. Normalized power provides insight into how cortical 
areas are functioning (relative weighting of frequency band pow-
ers) and may result in spatial shifts when compared to absolute 
power measures which indicate the cortical areas with the largest 
source (raw power). When examining the absolute power of our 
data (Figure  S2), the spatial distributions of all frequency bands 
were consistent with previous literature.

The different spatial patterns of EEG normalized power suggest 
that specific cortical regions are associated with specific frequency 
bands. Theta/alpha (5–10 Hz) band power was shown to have larger 
normalized power above the medial frontal cortices and the medial/
lateral parietal cortices suggesting a relationship to the default mode 
network, Figure 2. Specifically, the regions with the highest power 
in the theta/alpha frequency band resided over the medial prefron-
tal gyrus, anterior cingulate, posterior cingulate, and the angular 
gyri, which are all nodes associated with the default mode network 
(Damoiseaux et al., 2006; Muldoon et al., 2016; Raichle et al., 2001). 
EEG theta power has been shown to negatively correlate with the 
fMRI blood oxygen level dependent (BOLD) signal within the default 
mode network (Scheeringa et al., 2008). The alpha/beta (10–15 Hz) 
band displayed the largest normalized power above the bilateral 
visual cortices hinting at an association with the visual network, 
Figure  2. Alpha band activity is known to relate to visual stimula-
tion/processing and shows decreased power during increased levels 
of visual stimuli (Barry et  al.,  2007; Chen et  al.,  2008; Gale et  al., 
1969, 1971). Further, the EEG alpha band power has been shown 
to be correlated with the fMRI BOLD signal in visual occipital areas 
during resting state (Goldman et al., 2002; Scheeringa et al., 2012). 
The largest amount of beta (15–30  Hz) band power was localized 
over the bilateral parietal, sensory, motor, and premotor cortices 
which links the beta band to the sensorimotor network. These re-
gions have all been shown to modulate beta band activity during the 
control of movement in EEG event-related desynchronization stud-
ies (Pfurtscheller & Lopes da Silva, 1999; Pfurtscheller et al., 1997, 
1999). Although the current results support previous literature 
linking EEG resting-state power to well defined cortical networks, 
EEG theta, alpha, and beta frequency bands should not be inter-
preted as being associated with only one cortical network or pro-
cess. When examining resting state under either eyes open or eyes 
closed conditions, all frequencies ranging from delta to gamma show 
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decreased power during the eyes open condition, possibly linking 
these bands to the arousal state of the cortex (Barry et  al., 2007; 
Chen et al., 2008). In addition, resting-state research involving fMRI, 
EEG, and MEG has also indicated that multiple frequency bands are 
associated with the default mode, sensorimotor, executive control, 
visual, lateralized frontoparietal, auditory, and temporoparietal net-
works (Aoki et al., 2015; Brookes et al., 2011; Mantini et al., 2007).

4.3 | Power changes after stroke

The spatial topographies of normalized power observed in the stroke 
group differed substantially from controls. The stroke group had sig-
nificantly lower power in the alpha/beta (10–15 Hz) band across the 
entire brain except for the right non-lesioned visual cortex, Figure 2. 
Interestingly, the changes in the alpha/beta band power after stroke 
were not localized to areas above the visual cortices but were found 
globally across the scalp. While the alpha band has been related to 
the visual network (Barry et al., 2007; Chen et al., 2008; Gale et al., 
1969, 1971; Goldman et  al.,  2002; Scheeringa et  al.,  2012), stroke 
participants in our study did not report any stroke-related visual 
deficits such as loss of visual field or visuospatial neglect. However, 
the reported widespread decreases in the alpha/beta band could be 
related to changes in visual processing. Visual processing changes 
after stroke have been identified in studies examining visual mem-
ory performance and visual attention (Lange et  al.,  2000; Mazer 
et  al.,  2001). Alternatively, the widespread decreases in stroke 
alpha/beta (10–15  Hz) band power could be representative of an 
altered baseline arousal or activity state of the cortex after stroke. 
Alpha band activity has been shown to reduce power when the brain 
is more aroused in an eyes open versus eyes closed state (Barry 
et  al.,  2007; Chen et  al.,  2008). Further, alpha band resting-state 
power shares an inverse relationship to cortical activity (Goldman 
et  al.,  2002; Scheeringa et  al.,  2012), suggesting the resting brain 
might be in a state of higher arousal or activity after stroke.

Analysis of the stroke group's spatial normalized power distri-
bution within the beta (15–20 Hz) band revealed significantly lower 
power localized to areas over the lesioned hemisphere's sensory/
parietal cortex (Figure  2) indicative of dysfunction in the senso-
rimotor network. This result supports previous literature showing 
altered beta band activity above the lesioned motor cortex after 
stroke (Platz et al., 2000; Rossiter et al., 2014). Both the 10–15 and 
15–20 Hz levels of power in the stroke group correlated with impair-
ment, supporting past research indicating that functional ability can 
be predicted from resting-state information (Assenza et  al.,  2013; 
Kawano et al., 2017; Wu et al., 2015). While no electrodes showed 
significant differences within the delta (1–5 Hz) and theta (5–10 Hz) 
frequency bands in our study, both frequency bands did show in-
creases in normalized power relative to the controls supporting 
previous findings from Assenza indicating that delta and theta band 
powers are increased after stroke (Assenza et al., 2013).

When examining absolute power, it was found that absolute 
power differences between the stroke and control groups mimicked 

the trends seen in normalized power. This indicates that the ob-
served differences in normalized power between the control and 
stroke groups were likely due to true absolute power changes within 
frequency bands as opposed to a bias arising from normalization. 
While we focused our analysis on normalized power in the present 
study, analyzing absolute power should not be neglected because it 
offers valuable insight into the interpretation of normalized power 
results.

The stroke group had greater electrode directional asymmetry 
in the upper (15–50  Hz) frequency bands with less power in the 
lesioned hemisphere, Figure  3. Previous studies have shown that 
stroke patients tend to have more asymmetric EEG power distri-
butions and can be classified into either a stroke or control group 
based on their level of asymmetry (Köpruner & Pfurtscheller, 1984). 
Underlying networks, including the default mode network, are also 
more asymmetric after stroke (Tuladhar et al., 2013). The increased 
asymmetry is likely due to both a loss of neural substrate in the le-
sioned cortex as well as a shift in functional activity to the contral-
esional cortex due to cortical plasticity associated with recovery 
(James et al., 2009; Johansen-Berg et al., 2002; Liepert et al., 2000).

4.4 | Patterns of resting-state connectivity

In controls, theta/alpha/beta (5–15 Hz) frequency band connections 
were the most numerous, had the largest values of connectivity, and 
were symmetrically distributed throughout the cortex, suggesting 
they may be the dominant frequencies for cortical communication 
during resting state (Figure  4). Similar connectivity profiles with 
peaks in connectivity in the alpha and beta bands have been ob-
served in resting-state MEG (Brookes et al., 2011; Hipp et al., 2012). 
The widespread distribution of connections found in the theta/
alpha/beta frequency bands may be attributed to the fact that these 
frequencies are associated with multiple resting-state cortical net-
works distributed throughout the brain (Aoki et al., 2015; Brookes 
et al., 2011; Mantini et al., 2007). Interestingly, networks were only 
revealed when examining positive connectivity correlations as op-
posed to negative connectivity correlations. This indicates, at least 
under the constraints of our connectivity pipeline, that the brain's 
resting-state connectivity between regions may be dominated by 
excitatory versus inhibitory interactions.

4.5 | Connectivity changes after stroke

In comparison with the connectivity patterns seen in controls, the 
stroke group's connectivity displayed lower, more asymmetric con-
nectivity values in the theta/alpha/beta (5–15 Hz) frequency bands 
with larger connectivity values in the upper (25–50 Hz) frequencies 
(Figure 4). When testing for significant differences in connectivity 
between the control and stroke groups, we found networks with 
decreased connectivity in the alpha/beta (10–20 Hz) bands and in-
creased connectivity in the gamma (35–40 Hz) band for the stroke 
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group (Figure  5). Around half the connections of the significantly 
different networks in the alpha, beta, and gamma bands were iden-
tified to be interhemispheric connections, adding further evidence 
to notion that stroke disrupts inter-hemispheric communication 
(Carter et  al.,  2009; Pellegrino et  al.,  2012). The decrease in con-
nectivity observed in the alpha/beta band networks after stroke 
consisted of connections in both hemispheres, with most of the 
connections lateralized to the lesioned hemisphere, consistent with 
research showing deficits in functional connectivity throughout the 
brain but mainly in the lesioned hemisphere (Crofts & Higham, 2009; 
Crofts et al., 2011; De Vico Fallani et al., 2009; Tuladhar et al., 2013). 
Decreased connectivity of the alpha and beta bands in resting-
state paradigms has been reported using other EEG approaches 
(Dubovik et al., 2012, 2013; Wu et al., 2015). The decreased alpha 
(10–15  Hz) connectivity within a prefrontal-cerebellar network in 
the stroke group is consistent with previous findings from our labo-
ratory indicating decreased fMRI functional connectivity in a similar 
network after stroke (Kalinosky et al., 2017). The beta (15–20 Hz) 
band decreased connectivity consisted of prominent nodes in the 
lesioned hemisphere's sensory/parietal regions indicating it may be 
a marker of sensorimotor dysfunction that often occurs after stroke 
(Inman et al., 2012; Platz et al., 2000; Rossiter et al., 2014; Sharma 
et al., 2009; Wu et al., 2015). Although most connectivity research 
shows a reduction in functional connectivity after stroke, our finding 
of increased connectivity in the gamma (35–40 Hz) band supports 
EEG and modeling results showing stroke lesions can result in in-
creased connectivity and may do so as a compensatory mechanism 
(Alstott et al., 2009; Bönstrup et al., 2018).

Interestingly, we found that connectivity patterns did not share 
a relationship with motor impairment when analyzed using our ap-
proach. This finding is at odds with observations that EEG resting-
state connectivity predicts functional and behavioral outcomes 
after stroke (Dubovik et al., 2012, 2013; Wu et al., 2015). In addition, 
connectivity directional asymmetry only indicated a trend toward 
asymmetry after stroke, likely due to large standard deviations. 
This suggests that connectivity patterns are complex, with likely in-
creases and decreases in different frequencies and regions of the 
brain that challenge a direct functional interpretation.

4.6 | Functional alteration after stroke

The stroke group's loss of cortical activity and connectivity in the 
alpha/beta bands along with their increase of cortical activity and 
connectivity in the gamma band suggests a disruption of typical cor-
tical networks with an alteration to more local cortical networks after 
stroke (Figures 2, 4 and 5). The shift to more local (higher frequency 
networks) is most prevalent within the lesioned hemisphere with the 
largest changes observed in the connectivity spectrum (Figure 4b,c). 
Cortical networks with smaller neuronal populations/spatial extent 
oscillate at higher frequencies than networks with larger neuronal 
populations/spatial extent (Bullock et  al.,  1995; Eckhorn,  1994; 
Kopell et al., 2000; von Stein & Sarnthein, 2000). The frequency of 

network oscillations may not only depend on the distance or size of 
the two connected sites but also the number of synapses involved 
in an interaction (von Stein et al., 2000). After stroke, lesions to the 
cortex disconnect pathways linking disparate cortical regions result-
ing in smaller, isolated, more local (high frequency) networks. Our 
interpretation of high frequency activity representing local network 
activity and low frequency activity representing large scale network 
activity is supported by Zhu and colleagues who examined different 
frequency bands of resting-state fMRI in the stroke population (Zhu 
et al., 2015). Zhu and colleagues discovered that differences in neu-
ral activity between the stroke and control groups were frequency 
dependent with slower oscillations identifying widespread cortical 
areas and faster oscillations identifying local areas (Zhu et al., 2015).

4.7 | Study limitations

The current experimental design controlled for several confounding 
factors, such as the raw power bias in resting-state EEG and volume 
conduction in EEG connectivity. However, other factors may have 
impacted the EEG power and connectivity, including brain signals 
associated with trunk stabilization, EEG contamination by muscle 
activity and removal of EEG signal in the signal processing pipe-
line. During the study, participants were seated in a chair but were 
not otherwise restrained. Although participants were monitored 
throughout the experimental sessions for trunk movement, with no 
movement noted, the control and stroke groups might have engaged 
stabilizing trunk muscles differently, eliciting group-specific changes 
in cortical activity not specifically related to EEG resting state. Other 
potential confounding factors arose in the EEG data processing pipe-
line. It is possible that the AMICA algorithm did not fully separate 
signals and artifacts, resulting in the removal of some cortical signals 
and/or the inclusion of some artifactual components in the subse-
quent source imaging and analysis.

Another possible limitation centers around performing the con-
nectivity analysis at the source level as opposed to the sensor level. 
When performing connectivity analysis at the source level, accuracy 
of results vary depending on the choice of anatomical template, 
electrical model, inverse method, and connectivity metric (Mahjoory 
et  al.,  2017). However, when estimating the forward model, we 
chose to use a MNI/ICBM152 anatomical brain template with the 
BEM, which has advantages over spherical-shell models (Vatta 
et al., 2010). We estimated cortical sources using the weighted min-
imum norm estimate as opposed to beamforming methods, which 
has been shown to be more accurate for cortical patch sources 
(Hincapié et  al.,  2017). Lastly, source level connectivity was per-
formed using orthogonalized amplitude correlations that show bet-
ter test–retest reliability than other volume conduction independent 
connectivity measures such as imaginary coherence (Colclough 
et al., 2016). While performing connectivity analyses at the sensor 
level avoids these issues, sensor connectivity estimates have other 
complications. Coherence (connectivity) is dependent on the ref-
erence electrode or referencing scheme (common average, linked 
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mastoids, etc.), (Essl & Rappelsberger,  1998; Nunez et  al.,  1999; 
Rappelsberger, 1989). The use of a single electrode as the reference 
can inflate or deflate coherence values depending on the level of 
activity at the reference electrode; with higher values at the refer-
ence electrode being detrimental to coherence (Zaveri et al., 2000). 
Rappelsberger (Rappelsberger,  1989) suggested using a reference 
averaging technique, such as linked earlobes, to better approximate 
a zero-potential reference and mitigate this issue. While the com-
mon average reference provides an alternative averaging technique, 
the tendency for EEG signals to be synchronized over large areas of 
the scalp can result in a common average reference remaining high. 
While both sensor level and source level connectivity analyses have 
their idiosyncrasies, we opted to use the source level approach to 
obtain a better approximation of how cortical regions of the brain 
are connected.

4.8 | Clinical applications

The results reported here indicate that cortical networks are dis-
rupted after stroke and show an alteration to more asymmetric, 
local networks. In future studies, it would be interesting to examine 
how targeted changes in sensory feedback impact the asymmetry 
of local cortical networks and whether increased network sym-
metry correlates with motor recovery following stroke. Poststroke 
motor function has been associated with reductions in the integ-
rity of somatosensory pathways (Campfens et al., 2015; Zandvliet, 
van Wegen, et  al.,  2020), and recent findings from Zandvliet and 
colleagues suggest that recovery of somatosensory integrity over 
time may be necessary for full motor recovery (Zandvliet, Kwakkel, 
et al., 2020). Additionally, brain controllability studies indicate that 
application of external stimuli (e.g., via the application of neuro-
feedback, external sensory stimuli, or electrical stimulation) may 
be able to shift brain networks into different functional states (Gu 
et al., 2015; Muldoon et al., 2016). The application of targeted ex-
ternal sensory stimuli could also act to alter the asymmetric, local 
networks seen in resting state. Understanding how external stimuli 
affect resting-state networks could help explain functional improve-
ments in spasticity, balance control, arm tracking, arm stabilization, 
and hand function reported during application of tendon vibration 
and electrical stimulation (Celnik et al., 2007; Conrad et al., 2015; 
Conrad et al.,  2011a, 2011b; Dewald et  al.,  1995; Levin & Hui-
Chan, 1992; Priplata et al., 2006; Wu et al., 2006).

5  | CONCLUSIONS

After stroke, EEG signals shifted from dominant alpha/beta (10–
20 Hz) band networks toward higher frequency (35–40 Hz) gamma 
networks. Decreases in cortical activity (normalized power) were 
found globally for the alpha (10–15 Hz) band and locally above the 
lesioned hemisphere for the beta (15–20 Hz) band; both displayed a 
linear relationship with functional ability. Asymmetries in EEG power 

were also noted for the 15–50 Hz frequencies, with less power in 
the lesioned hemisphere. Connectivity results revealed networks 
within the alpha (10–15 Hz) and beta (15–20 Hz) bands that were 
lowered after stroke while one network in the gamma (35–40 Hz) 
band displayed increased connectivity after stroke. Stroke-related 
changes in cortical activity and connectivity showed the largest ef-
fect in the lesioned hemisphere. These findings suggest that stroke 
lesions disrupt pathways causing network alteration to more local, 
asymmetric networks.
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